Patrick Koopmann

December 12, 2017

<□ > < @ > < E > < E > E の Q @ 1/60

Introduction

Forgetting

Predicate forgetting

Given \mathcal{L} sentence ϕ , predicate P, compute ϕ^{-P} s.t.

•
$$P$$
 does not occur in ϕ^{-P}

• for every
$$\mathcal{L}$$
 sentence ψ without P :

<□ > < @ > < E > < E > E の Q @ 2/60

•
$$\phi^{-P} \models \psi$$
 iff $\phi \models \psi$

Introduction

Forgetting

Predicate forgetting

```
Given \mathcal{L} sentence \phi, predicate P,
compute \phi^{-P} s.t.
```

•
$$\phi^{-P} \models \psi$$
 iff $\phi \models \psi$

Theorem for first order logic:

• Iff
$$\phi^{-P}$$
 exists, then $\phi^{-P} \equiv \exists P.\phi$

<□ > < @ > < E > < E > E の Q @ 2/60

Introduction

Uniform Interpolation

Craig Interpolation:

- Given $F \models G$, compute *interpolant I* s.t.
 - $F \models I$,
 - *I* |= *G*
 - I contains only symbols common to F and G

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 3/60

Introduction

Uniform Interpolation

Craig Interpolation:

- Given $F \models G$, compute *interpolant I* s.t.
 - $F \models I$,
 - *I* |= *G*
 - I contains only symbols common to F and G

Uniform Interpolation

Given

∎ formula *F*

signature Σ of symbols

compute uniform interpolant (UI) F^{Σ} s.t.

- F^{Σ} only uses symbols from Σ
- for every ψ in Σ , $F \models \psi$ iff $F^{\Sigma} \models \psi$

-Introduction

Uniform Interpolation

Craig Interpolation:

- Given $F \models G$, compute *interpolant I* s.t.
 - \blacksquare $F \models I$,
 - $I \models G$
 - I contains only symbols common to F and G

Uniform Interpolation

Given

formula F

• signature Σ of symbols

compute uniform interpolant (UI) F^{Σ} s.t.

- F^{Σ} only uses symbols from Σ
- for every ψ in Σ , $F \models \psi$ iff $F^{\Sigma} \models \psi$

Dual to Forgetting:

- Introduction

Uniform Interpolation

Input Ontology

 $Male \sqcap Female \sqsubseteq \bot$ $\sqcap \ \sqsubseteq \ \forall hasParent.Parent$ $Parent \sqsubseteq Male \sqcup Female$ $Father \equiv Parent \sqcap Male$ $Mother \equiv Parent \sqcap Female$ $Orphan \equiv \forall hasParent. \neg Alive$

hasParent(peter, thomas) Male(thomas) Alive(thomas) hasParent(thomas, ingrid)

<ロ> < 母> < 母> < 注> < 注> < 注 > 注 の へ で 4/60

- Introduction

Motivation

Ontology Reuse

instructural delivative CLC Steri Line .
Rig Conoral Ontology
Dig General Unitology
eric alvcasphinaplinid o IC Phosphonosphinaplinid) E L

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E ∽ Q ~ 5/60

- Introduction

Motivation

Explore Hidden Relations

- Select concept and role names of interest
- Make relations between them explicit

- Introduction
 - Motivation

Logical Difference

Compare ontology versions

Capture all new entailments in signature Σ:

- logDiff($\mathcal{T}_1, \mathcal{T}_2, \Sigma$) = { $\alpha \in \mathcal{T}_2^{\Sigma} \mid \mathcal{T}_1 \not\models \alpha$ }
- Σ : common signature, or set of "core" symbols

Introduction

- Motivation

Module Extraction

Subsumption modules:

- Subset of the ontology preserving entailments in signature
- UI + axiom pinpointing/justification

Introduction

- Motivation

Applications of UI

Further applications:

- Multi-agent systems
- Conflict resolution
- Abduction (see later talk)
- Similar applications in modal logics
 - Most techniques presented here also apply to modal logics

- Introduction

- Motivation

Applications of UI

Further applications:

- Multi-agent systems
- Conflict resolution
- Abduction (see later talk)
- Similar applications in modal logics
 - Most techniques presented here also apply to modal logics
- Not an application: modal correspondence
 - Apply SOQE to obtain frame properties:

 $\forall p: \Box \Box p \to \Box p \qquad \Longleftrightarrow \quad \forall xyz.(r(x,y) \land r(y,z) \to r(x,z))$

- Requires elimination to preserve all models
- UI only preserves entailments in language under consideration

- Preliminaries

Expressive Description Logics

Concepts ALC

$$\bot \mid \top \mid A \mid \neg C \mid C \sqcup D \mid C \sqcap D \mid \exists r.C \mid \forall r.C$$

TBox Axioms \mathcal{ALC}	ABox Axioms \mathcal{ALC}
$C \sqsubseteq D \mid C \equiv D$	$C(a) \mid r(a, b)$

 \mathcal{ALCH} : Role Hierarchies \mathcal{ALCF} : Local Functionality $\leq 1r.\top, \geq 2r.\top$ SH: Transitive Roles SHQ: Number Restrictions SHI: Inverse Roles

 $r \sqsubset s$ trans(r) > nr.C, < nr.C r^{-1}

Preliminaries

Example

UI of Pizza ontology, for 10 most frequent concept and role names

 $\exists has Topping. \top \sqsubseteq Pizza \qquad \top \sqsubseteq \forall has Topping. Pizza Topping \\ \exists has Spiciness. (Pizza \sqcup Pizza Topping) \sqsubseteq \bot$

NamedPizza \sqsubseteq PizzaVegetableTopping \sqsubseteq PizzaToppingMozzarellaTopping \sqsubseteq PizzaTopping \sqcap \exists hasSpiciness.MildOliveTopping \sqsubseteq VegetableTopping \sqcap \exists hasSpiciness.MildTomatoTopping \sqsubseteq VegetableTopping \sqcap \exists hasSpiciness.Mild

Pizza \sqcap Mild $\sqsubseteq \bot$ Pizza \sqcap Pizza Topping $\sqsubseteq \bot$ Pizza Topping \sqcap Mild $\sqsubseteq \bot$ Mozzarella Topping \sqcap Vegetable Topping $\sqsubseteq \bot$ Olive Topping \sqcap Tomato Topping $\sqsubseteq \bot$

Preliminaries

Relation to Modal Logic

There is a direct relation to multi-modal logics:

- $\exists r. C$ corresponds to $\Diamond_r. C'$
- $\forall r.C$ corresponds to $\Box_r.C'$
- $\exists r^{-}.C$ corresponds to $\Diamond_{r}^{\smile}.C'$
- number restrictions correspond to graded modalities

- transitivity as in S4 for selected roles
- Concepts correspond to modal logic formulae
- But: TBox axioms hold globally

Preliminaries

Uniform Interpolation

Relation to Second-Order Quantifier Elimination

In first order logic, forgetting corresponds to SOQE:

• Iff
$$\phi^{-P}$$
 exists, then $\phi^{-P} \equiv \exists P.\phi$

This does not apply in the logics considered

- Consider $\top \sqsubseteq \exists r.A \sqcap \exists r.\neg A$
- Forgetting A from the FO-representation yields:

$$\exists A. \forall x \exists yz. (r(x, y) \land A(y) \land r(x, z) \land \neg A(z)) \\ \equiv \forall x \exists yz. (r(x, y) \land r(x, z) \land y \neq z)$$

In ALC, the UI is just:

$$\top \sqsubseteq \exists r. \top$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 13/60

Preliminaries

Uniform Interpolation

Challenges Uniform Interpolation

- A lot of modal logics have uniform interpolation:
 Κ, IPC, GL, S4Grz [Visser, 1996]
 modal μ-calculus [D'Agostino, Hollenberg, 1996]
- In most DLs, TBoxes break this property

Consider:

$$A \sqsubseteq B \qquad B \sqsubseteq \exists r.B \qquad \Sigma = \{A, r\}$$

Ul for Σ:

Preliminaries

Uniform Interpolation

Challenges Uniform Interpolation in DLs

- In general, we may have to approximate or to use more expressive DLs
- Deciding existence of UIs in ALC is 2ExpTIME-complete

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 15/60

A second challenge is *size* If exists, T^Σ can have size O (2^{2^{2|T|}})
 Already for lightweight DL *EL*

ALC: [Lutz, Wolter, 2010], EL: [Nikitina, Rudolph, 2014]

Computing Uniform Interpolants

Computing Uniform Interpolants Practically

Can we compute uniform interpolants practically?

Upper bound on size directly gives us a method for computing Uls:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E りへで 16/60

- **1** Iterate over all axioms in signature of size $2^{2^{2^{|T|}}}$
- 2 Collect all those that are entailed
- \Rightarrow However, this is not practical at all!

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

First more "practical" idea: use tableaux

- Directly generate entailed axioms
- Each tree corresponds to disjunct in result
- Different edges for ∃- and ∀-restrictions

Modal Logic: [Kracht, 2007], ALC: [Wang, Wang et al, 2010]

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ りへで 17/60

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

Obtain $\top \sqsubseteq C_1 \sqcup \ldots \sqcup C_n$ from tableau

- Each *C_i* constructed from one tree
- Only keep what is in signature

With TBox, tableau might not be finite

- Allows to compute arbitrary approximations
- Equivalence test to check for termination
 - last approximation equivalent to current

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

Disadvantages of approach:

- Result big disjunction
 - Unusual representation for ontologies

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 19/60

- Expansions not goal-oriented
- Expensive termination condition

Resolution Based Uniform Interpolation

Using Resolution to Compute Uniform Interpolation

Resolution addresses short-comings

- Usually works on *conjunctive* normal forms
 - Conjunction of disjunctions
 - Closer to typical shape of ontologies
- Infers information on specific symbol

Prop. Resolution	First Order Resolution
$C_1 \lor p$ $C_2 \lor \neg p$	$C_1 \vee P(s_1,\ldots,s_n)$ $C_2 \vee \neg P(t_1,\ldots,t_n)$
$C_1 \lor C_2$	$\hline C_1 \lor C_2 \lor s_1 \neq t_1 \lor \ldots \lor s_n \neq t_n$

- Resolution Based Uniform Interpolation
 - Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Main idea used by SOQE method SCAN [Gabbay, Ohlbach, 1992]

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 21/60

- Clausify input formula
- 2 Infer all inferences on predicate to eliminate
- 3 Filter out occurrences of that predicate
- 4 Deskolemise resulting set of clauses

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Let's try it!

We want to forget B from following ontology:

$$A \sqsubseteq \forall r.B \qquad \qquad C \sqsubseteq \exists r. \neg B$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ Q ♀ 22/60

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Let's try it!

We want to forget B from following ontology:

$$A \sqsubseteq \forall r.B \qquad \qquad C \sqsubseteq \exists r. \neg B$$

Representation as First-Order clauses:

$$1.\neg A(x) \lor \neg r(x,y) \lor B(y) \qquad 2.\neg C(x) \lor r(x,f(x))$$
$$3.\neg C(x) \lor \neg B(f(x))$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ Q ♀ 22/60

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1. $\neg A(x) \lor \neg r(x, y) \lor B(y)$ 2. $\neg C(x) \lor r(x, f(x))$ 3. $\neg C(x) \lor \neg B(f(x))$

Inferences on *B*:

4. $\neg A(x) \lor \neg r(x, y) \lor \neg C(x) \lor y \neq f(x)$ (Resolution 1,3) 5. $\neg A(x) \lor \neg r(x, f(x)) \lor \neg C(x)$ (Constr. Elim.)

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1. $\neg A(x) \lor \neg r(x, y) \lor B(y)$ 2. $\neg C(x) \lor r(x, f(x))$ 3. $\neg C(x) \lor \neg B(f(x))$

Inferences on B:

4. $\neg A(x) \lor \neg r(x, y) \lor \neg C(x) \lor y \neq f(x)$ (Resolution 1,3) 5. $\neg A(x) \lor \neg r(x, f(x)) \lor \neg C(x)$ (Constr. Elim.)

 \Rightarrow SCAN terminates, but we have insufficient information for UI!

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1.
$$\neg A(x) \lor \neg r(x, y) \lor B(y)$$
 2. $\neg C(x) \lor r(x, f(x))$
3. $\neg C(x) \lor \neg B(f(x))$

Inferences on B:

4.
$$\neg A(x) \lor \neg r(x, y) \lor \neg C(x) \lor y \neq f(x)$$
 (Resolution 1,3)
5. $\neg A(x) \lor \neg r(x, f(x)) \lor \neg C(x)$ (Constr. Elim. 4)

Additional steps complete the picture:

6.
$$\neg A(x) \lor \neg C(x) \lor f(x) \neq f(x)$$
(Resolution 2,5)7. $\neg A(x) \lor \neg C(x)$ (Constr. Elim. 6)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 24/60

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Complete Clause Set:

1.
$$\neg A(x) \lor \neg r(x, y) \lor B(y)$$

2. $\neg C(x) \lor r(x, f(x))$
3. $\neg C(x) \lor \neg B(f(x))$
4. $\neg A(x) \lor \neg r(x, y) \lor \neg C(x) \lor y \neq f(x)$
5. $\neg A(x) \lor \neg r(x, f(x)) \lor \neg C(x)$
6. $\neg A(x) \lor \neg C(x) \lor f(x) \neq f(x)$
7. $\neg A(x) \lor \neg C(x)$

Uniform Interpolant:

$$C \sqsubseteq \exists r. \top \qquad A \sqcap C \sqsubseteq \bot$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 25/60

- Resolution Based Uniform Interpolation
 - Computing UIs with SCAN

Using Resolution to Compute Uniform Interpolants

- Downsides of SCAN:
 - Infers too much
 - Infers too little
- Needed: More than just SOQE
- \Rightarrow Infer consequences that are
 - in target signature
 - translate to logic under consideration
 - More direct approach:
 - Stay in logic under consideration

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 26/60

- Resolution Based Uniform Interpolation
 - Computing UIs with Modal Resolution

Uniform Interpolation Using Modal Resolution

- Idea first followed by [Herzig and Mengin, 2008] for modal logic K
- Based on resolution calculus for modal logics by [Enjalbert and Fariñas, 1985]
- Allow to resolve on arbitrary levels of formula:

$$\begin{array}{l} C_1 \lor \Diamond \Box (C_2 \lor p) \\ C_3 \lor \Diamond \Diamond (C_4 \lor \neg p) \end{array} \Longrightarrow C_1 \lor C_3 \lor \Diamond \Diamond (C_2 \lor C_4) \end{array}$$

Idea: use system of "meta"-rules to generate rules with arbitrary nesting depth

- Resolution Based Uniform Interpolation
 - Computing UIs with Modal Resolution

Modal Resolution after Enjalbert and Fariñas

- Normal form assumes DNF/CNF on each level of formula
 - CNF under diamond: $\Diamond(C_1, \ldots, C_n)$
 - DNF under box: $\Box(T_1 \lor \ldots \lor T_n)$
- Base rules: $C_1 \lor \Box \bot, \quad C_2 \lor \Diamond E \implies_{\alpha} C_1 \lor C_2$ $C_1 \lor p, \quad C_2 \lor \neg p \implies_{\alpha} C_1 \lor C_2$

• Extended rules provided $C_1, C_2 \Longrightarrow_{\alpha} C_3 / C_1 \Longrightarrow_{\alpha} C_2$

$$\begin{array}{lll} C_1' \lor \Box C_1, & C_2' \lor \Diamond (C_2, E) & \Longrightarrow_{\alpha} C_1' \lor C_2' \lor \Diamond (C_2, E, C_3) \\ C_1' \lor \Box C_1, & C_2' \lor \Box C_2 & \Longrightarrow_{\alpha} C_1' \lor C_2' \lor \Box C_3 \\ C \lor \Diamond (C_1, C_2, E) & \Longrightarrow_{\alpha} C \lor \Diamond (C_1, C_2, E, C_3) \\ C \lor \Diamond (C_1, E) & \Longrightarrow_{\alpha} C \lor \Diamond (C_1, E, C_2) \\ C \lor \Box C_1 & \Longrightarrow_{\alpha} C \lor \Box C_2 \end{array}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q @ 28/60

- Resolution Based Uniform Interpolation
 - Computing UIs with Modal Resolution

Computing UIs using Modal Resolution

- UI computed similar to SCAN:
 - Compute all resolvents on symbols to forget
- Forms complete method for modal logic K
- Termination assured by maximum nesting depth in K
- Extended to ALC in [Ludwig and Konev, 2014]:
 - First practical method for UI in ALC
 - Additional rules to handle TBox axioms
 - Termination cannot be guaranteed, but arbitrary approximations computed

- Resolution Based Uniform Interpolation
 - Computing UIs with Modal Resolution

Computing UIs by Modal Resolution

- Goal-oriented approach allows for practicality
- The cost is completeness

$$A \sqsubseteq B \qquad B \sqsubseteq C \sqcup \exists r.B \qquad A \sqsubseteq \forall r.\forall r.\bot$$
$$\Sigma = \{A, C, r\}$$

- Computing inferences only on B will not terminate
- However, there is a uniform interpolant for $\{A, C, r\}$:

$$A \sqsubseteq C \sqcup \exists r. C \qquad A \sqsubseteq \forall r. \forall r. \bot$$

Probably in general no easy solution
Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Computing UIs using Resolution

What to do about termination problem?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ♡ < ↔ 31/60

- Resolution Based Uniform Interpolation
 - Computing UIs with Modal Resolution

Computing UIs using Resolution

- What to do about termination problem?
- \Rightarrow Move to language that *has* uniform interpolation!

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の < C 31/60

- Resolution Based Uniform Interpolation
 - └─DLs with Greatest Fixpoints

DLs With Greatest Fixpoint Operators

- New concept constructor vX.C[X]
 - C[X]: concept that contains X only positively
- Allows to represent *loops*:

$$A \sqcap \nu X.(C \sqcap \exists r.X) \iff A \sqcap \overbrace{C \sqcap \exists r.\Box}$$

 $\iff A \sqcap (C \sqcap \exists r.(C \sqcap \exists r.(C \sqcap \exists r.(...))))$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ ♀ ⊙ 32/60

- Resolution Based Uniform Interpolation
 - DLs with Greatest Fixpoints

Consider the following ontology:

$$A \sqsubseteq B \sqcup C$$
 $B \sqsubseteq \exists r.B$ $C \sqsubseteq \forall r. \neg B$

• No UI for
$$\Sigma = \{A, C, r\}$$
 in ALC

• However, in $ALC\nu$, we have the following UI:

 $C \sqsubseteq \forall r.(\neg A \sqcup C) \qquad A \sqsubseteq C \sqcup \nu X.(\neg C \sqcap \exists r.X)$

- Resolution Based Uniform Interpolation
 - └─DLs with Greatest Fixpoints

DLs with Greatest Fixpoint Operators

- Greatest fixpoint operators give us uniform interpolation in *ALC-ALCHI*
- They can be easily approximated:

$$\nu X.C[X] \approx C[C[C[C[\top]]]]$$

They can be "simulated" using auxiliary concept names:

 $A \sqsubseteq \nu X.C[X]$ becomes $A \sqsubseteq D$, $D \sqsubseteq C[D]$

▲□▶▲□▶▲□▶▲□▶ ■ のへで 34/60

Flattened Approach

Flattened Approach

Final approach:

- Uses resolution
- Uses *flattened* normal form to ensure termination
- Always terminates for ALCHν (ALCH+greatest fixpoints)
 - \blacksquare Fixpoints can then be approximated or simulated in \mathcal{ALCH}

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 35/60

-Flattened Approach

Basic Calculus

Normal form, ALCH

$\begin{array}{c} \mathcal{ALCH} \text{ Clause} \\ r \sqsubseteq s \\ \top \sqsubseteq L_1 \sqcup \ldots \sqcup L_n \qquad \qquad L_i: \ \mathcal{ALC} \text{ literal} \end{array}$

\mathcal{ALC} Literal

$A \mid \neg A \mid \exists r.D \mid \forall r.D$ A: any concept name, D: definer symbol

- Definer symbols: special concept names, not part of signature
 Invariant: max 1 negative definer symbol per clause
 - $\Rightarrow \neg D_1 \sqcup \exists r. D_2 \sqcup \neg B, \quad \neg D_1 \sqcup \neg D_2 \sqcup A$

Flattened Approach

Basic Calculus

Definer symbols

Invariant: max 1 negative definer symbol per clause

Allows easy translation to clausal form and back:

$$\begin{array}{ll} C_1 \sqcup \mathsf{Q}r.C_2 & \Longleftrightarrow C_1 \sqcup \mathsf{Q}r.D_1, & \neg D_1 \sqcup C_2 \\ C_1 \sqcup \nu X.C_2[X] & \Longleftrightarrow C_1 \sqcup \mathsf{Q}r.D_1, & \neg D_1 \sqcup C_2[D] \end{array}$$

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ ٩ ℃ 37/60

New definer symbols introduced by calculus

At most exponentially many

Flattened Approach

Basic Calculus

Basic Method

Flattened Approach

Basic Calculus

Rules of the Calculus

Concept forgetting in \mathcal{ALC} uses two rules

Resolution	Role Propagation	
$C_1 \sqcup A$ $C_2 \sqcup \neg A$	$C_1 \sqcup \forall r.D_1$ $C_2 \sqcup Qr.D_2$	
$C_1 \sqcup C_2$	$C_1 \sqcup C_2 \sqcup Qr.D_{12}$	

- where $Q \in \{\forall, \exists\}$
- D_{12} is a possibly new definer representing $D_1 \sqcap D_2$
- side condition: $C_1 \sqcup C_2$ does not contain more than one negative definer literal

Flattened Approach

Basic Calculus

Assume the following ontology:

 $C_1 \sqsubseteq \exists r.A$ $C_2 \sqsubseteq \forall r.(B \sqcup \neg A)$

Normalisation brings four clauses:

 $\neg C_1 \sqcup \exists r. D_1 \qquad \neg D_1 \sqcup A$ $\neg C_2 \sqcup \forall r. D_2 \qquad \neg D_2 \sqcup B \sqcup \neg A$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E りへで 40/60

Flattened Approach

Basic Calculus

$\neg D_1 \sqcup A$ $\neg C_1 \sqcup \exists r.D_1$

$\neg D_2 \sqcup B \sqcup \neg A$ $\neg C_2 \sqcup \forall r.D_2$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 41/60

- Flattened Approach
 - Basic Calculus

- Flattened Approach
 - Basic Calculus

- Flattened Approach
 - Basic Calculus

Flattened Approach

Basic Calculus

Final clause set:

We obtain as uniform interpolant for $\{r, B, C_1, C_2\}$:

 $C_1 \sqsubseteq \exists r. \top \qquad C_2 \sqsubseteq \forall r. \top \qquad C_1 \sqcap C_2 \sqsubseteq \exists r. B$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ○ 42/60

Flattened Approach

Basic Calculus

Forgetting Concept and Role Names in \mathcal{ALCH}

⇒ Rules form *refutational* and *interpolation* complete calculus

Flattened Approach

Basic Calculus

Forgetting Role Names

Alternative rule allows for more convenient implementation

Provided $\mathcal{T} \models D_0 \sqcap \ldots \sqcap D_n \sqcap D \sqsubseteq \bot$, apply:

Role Restriction Resolution

$$\frac{C_0 \sqcup \forall r.D_0 \quad \dots \quad C_n \sqcup \forall r.D_n \qquad C \sqcup \exists r.D}{C_0 \sqcup \dots \sqcup C_n \sqcup C}$$

Side condition: $C_0 \sqcup \ldots \sqcup C_n \sqcup C$ does not contain more than one negative definer literal

 \Rightarrow Use external reasoner

Flattened Approach

Basic Calculus

Forgetting Algorithm

To eliminate (concept/role) name X:

- 1 Determine literals that allow for inference on name
- 2 If result would break invariant:
 - Check whether role propagation makes inference possible

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ り < ○ 45/60

Evt. recursively call Step 2

Flattened Approach

Basic Calculus

Forgetting Algorithm

To eliminate (concept/role) name X:

- 1 Determine literals that allow for inference on name
- 2 If result would break invariant:
 - Check whether role propagation makes inference possible
 - Evt. recursively call Step 2

General Algorithm:

- 1 Process names by number of occurrences
- 2 Use simplification heuristics at each step to keep result small
 - Determine *tautological fixpoints*: $\nu X.C[X]$ where $C[\top] = \top$

- Flattened Approach
 - Extensions for More Expressive DLs

Flattened Approach

- General structure of calculus:
 - **1** Resolution-like rule (Resolution, ∃-elimination, etc.)
 - 2 Combination rule (role propagation rule)
- Purpose of combination rule is to introduce definers
- More combination rules possible in more expressive DLs

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ り < ○ 46/60

- Flattened Approach
 - Extensions for More Expressive DLs

Functional Role Restrictions

\mathcal{ALCF} has constructors $\leq 1r.\top$ and $\geq 2r.\top$

 $\Rightarrow\,$ local functionality and its complement

Universalisation	∃∃-Role Propagation		
$C_1 \sqcup \exists r. D_1$ $C_2 \sqcup \leq 1r. \top$	$C_1 \sqcup \exists r.D_1$ $C_2 \sqcup \exists r.D_2$		
$C_1 \sqcup C_2 \sqcup \forall r.D_1$	$C_1 \sqcup C_2 \sqcup \exists r. D_{12} \sqcup \geq 2r. \top$		

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の Q ↔ 47/60

Flattened Approach

LExtensions for More Expressive DLs

Example Functional Role Restrictions

Example:

 $A \sqsubseteq \exists r.B$ $A \sqsubseteq \exists r.\neg B$

Clauses:

1.
$$\neg A \sqcup \exists r. D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r. D_2$ 4. $\neg D_2 \sqcup \neg A$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = りへで 48/60

Flattened Approach

LExtensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1.
$$\neg A \sqcup \exists r.D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r.D_2$ 4. $\neg D_2 \sqcup \neg A$

Inferences:

5.
$$\neg A \sqcup \exists r. D_{12} \sqcup \geq 2r. \top$$
 ($\exists \exists$ -Role Prop. 1,3)

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 3 Q (~ 49/60

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1.
$$\neg A \sqcup \exists r. D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r. D_2$ 4. $\neg D_2 \sqcup \neg A$

Inferences:

5.
$$\neg A \sqcup \exists r. D_{12} \sqcup \ge 2r. \top$$
($\exists \exists$ -Role Prop. 1,3)6. $\neg D_{12} \sqcup A$ ($D_{12} \sqsubseteq D_1$)7. $\neg D_{12} \sqcup \neg A$ ($D_{12} \sqsubseteq D_2$)

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 3 Q (~ 49/60

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1.
$$\neg A \sqcup \exists r.D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r.D_2$ 4. $\neg D_2 \sqcup \neg A$

Inferences:

5.
$$\neg A \sqcup \exists r. D_{12} \sqcup \geq 2r. \top$$
($\exists \exists$ -Role Prop. 1,3)6. $\neg D_{12} \sqcup A$ ($D_{12} \sqsubseteq D_1$)7. $\neg D_{12} \sqcup \neg A$ ($D_{12} \sqsubseteq D_2$)8. $\neg D_{12}$ (Resolution 6,7)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 49/60

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1.
$$\neg A \sqcup \exists r.D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r.D_2$ 4. $\neg D_2 \sqcup \neg A$

Inferences:

5. $\neg A \sqcup \exists r. D_{12} \sqcup \ge 2r. \top$ 6. $\neg D_{12} \sqcup A$ 7. $\neg D_{12} \sqcup \neg A$ 8. $\neg D_{12}$ 9. $\neg A \sqcup \ge 2r. \top$

(∃∃-Role Prop. 1,3)

$$(D_{12} \sqsubseteq D_1)$$

 $(D_{12} \sqsubseteq D_2)$
(Resolution 6,7)
(∃-elimination 5,8)

Flattened Approach

Extensions for More Expressive DLs

Functional Role Restrictions

Example:

$$A \sqsubseteq \exists r.B$$
 $A \sqsubseteq \exists r.\neg B$

Clauses:

1.
$$\neg A \sqcup \exists r.D_1$$
2. $\neg D_1 \sqcup A$ 3. $\neg A \sqcup \exists r.D_2$ 4. $\neg D_2 \sqcup \neg A$ 5. $\neg A \sqcup \exists r.D_{12} \sqcup \geq 2r.\top$ 6. $\neg D_{12} \sqcup A$ 7. $\neg D_{12} \sqcup \neg A$ 8. $\neg D_{12}$ 9. $\neg A \sqcup \geq 2r.\top$

Uniform interpolant for $\Sigma = \{A, r\}$:

 $A \sqsubseteq \geq 2r.\top$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = りへで 50/60

- Flattened Approach
 - Extensions for More Expressive DLs

General Number Restrictions

Rules can be generalised to support qualified number restrictions

$\leq\leq$ -Combination:	$\geq \leq$ -Combination:		
$\frac{C_1 \sqcup \leq n_1 r_1. \neg D_1 \qquad C_2 \sqcup \leq n_2 r_2. \neg D_2 \qquad r \sqsubseteq r_1 \qquad r \sqsubseteq r_2}{C_1 \sqcup C_2 \sqcup \leq (n_1 + n_2)r. \neg D_{12}}$	$\frac{C_1 \sqcup \ge n_1 r_1.(D_1 \sqcup \ldots \sqcup D_m) \qquad C_2 \sqcup \le n_2 r_2.\neg D_a \qquad r_1 \sqsubseteq_{\mathcal{R}} r_2}{C_1 \sqcup C_2 \sqcup \ge (n_1 - n_2)r_1.(D_{1a} \sqcup \ldots \sqcup D_{ma})}$		
$\leq\geq$ -Combination:	$\geq \geq$ -Combination:		
$\frac{C_1 \sqcup \leq n_1 r_1 . \neg D_1 C_2 \sqcup \geq n_2 r_2 . D_2 r_2 \sqsubseteq_{\mathcal{R}} r_1 n_1 \geq n_2}{C_1 \sqcup C_2 \sqcup \leq (n_1 - n_2) r_1 . \neg (D_1 \sqcup D_2) \sqcup \geq 1 r_1 . D_{12}}$	$\frac{C_1 \sqcup \ge n_1 r_1 . \mathcal{D}_1 \qquad C_2 \sqcup \ge n_2 r_2 . \mathcal{D}_2 \qquad r_1 \sqsubseteq_{\mathcal{R}} r \qquad r_2 \sqsubseteq_{\mathcal{R}} r}{C_1 \sqcup C_2 \sqcup \ge (n_1 + n_2) r. (\mathcal{D}_1 \sqcup \mathcal{D}_2) \sqcup \ge 1 r. \mathcal{D}_{12}}$		
$C_1 \sqcup C_2 \sqcup \leq (n_1 - 1)r_1 . \neg (D_1 \sqcup D_2) \sqcup \geq n_2 r_1 . D_{12}$	$C_1 \sqcup C_2 \sqcup \ge (n_1 + 1)r.(\mathcal{D}_1 \sqcup \mathcal{D}_2) \sqcup \ge n_2r.\mathcal{D}_{12}$		

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ♀ 51/60

- Flattened Approach
 - Extensions for More Expressive DLs

Limits of Approach

- Approach has been extended to DLs supporting:
 - local functionality
 - number restrictions (graded modalities)
 - transitive roles (as in modal logic S4)
 - inverse roles (converse modalities)
 - ABoxes
- \Rightarrow Complete methods for $SHI\nu$, $SIF\nu$ and $SHQ\nu$
 - Transitive roles cannot be eliminated
 - *SHQ*: only forgetting concept names
 - Combining rules further breaks completeness
 - Possibly limit of resolution approach
 - Might require support for role conjunctions

- Flattened Approach
 - Evaluation

Evaluation of Forgetting

\mathcal{ALCH} , forget 50 symbols		
Success Rate:	91.10%	
Without Fixpoints:	95.29%	
Duration Mean:	7.68 sec.	
Duration Median:	2.74 sec.	
Duration 90th percentile:	12.45 sec.	

${\cal ALC}$ w. ABoxes, forget 50 symbols			
Success Rate:	94.79%		
Without Fixpoints:	92.91%		
Duration Mean:	23.94 sec.		
Duration Median:	3.01 sec.		
Duration 90th percentile:	29.00 sec.		

\mathcal{ALCH} , forget 100 symbols			
Success Rate: 88.10%			
Without Fixpoints:	93.27%		
Duration Mean:	18.03 sec.		
Duration Median:	3.81 sec.		
Duration 90th percentile:	21.17 sec.		

\mathcal{ALC} w. ABoxes, forget 100 symbols				
Success Rate: 91.37%				
Fixpoints:	92.48%			
Duration Mean:	57.87 sec.			
Duration Median:	6.43 sec.			
Duration 90th percentile:	99.26 sec.			

SHQ, forget 50 concept symbols		\mathcal{SHQ} , forget 100 concept symbols		
Success Rate:	95.83%	Timeouts:	90.77%	
Without Fixpoints:	93.40%	Fixpoints:	91.99%	
Duration Mean:	7.62 sec.	Duration Mean:	13.51 sec.	
Duration Median:	1.04 sec.	Duration Median:	1.60 sec.	
Duration 90th percentile:	4.89 sec.	Duration 90th percentile:	11.65 sec.	

Corpus Respective fragments of 306 ontologies from BioPortal having at most 100,000 axioms.

Timeout 30 minutes

Flattened Approach

Evaluation

Evaluation of Uniform Interpolation

${\cal ALC}$ Knowledge Bases, $\#{\cal S}=50$)	${\cal ALC}$ Knowledge Bases, $\#{\cal S}=100$	
Success Rate:	84.78%	1	Success Rate:	80.54%
Without Fixpoints:	96.06%		Without Fixpoints:	95.04%
Duration Mean:	113.90 sec.		Duration Mean:	313.28 sec.
Duration Median:	29.58 sec.		Duration Median:	214.56 sec.
Duration 90th percent.:	330.56 sec.	Duration 90th percent.:		780.30 sec.
Axioms Mean:	198.52		Axioms Mean:	302.78
Axioms Median:	31.00		Axioms Median:	84.00
Axioms 90th percent.:	426.00		Axioms 90th percent.:	709.00
Ax. Size Mean:	6.15		Ax. Size Mean:	4.66
Ax. Size Median:	3.00		Ax. Size Median:	3.04
Ax. Size 90th percent .:	5.59		Ax. Size 90th percent.:	5.82

Corpus Respective fragments of 306 ontologies from BioPortal having at most 100,000 axioms.

Timeout 30 minutes

Conclusion

Conclusion

- Ul has many applications in DLs, but also in modal logics
- Resolution often allows to compute UIs practically
- Method implemented in tool/library LETHE, available online
- Calculi might have applications outside UI
- Not covered in this tutorial:
 - Forgetting with ABoxes
 - Forgetting with background knowledge

Conclusion

Thank you!

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 56/60

- Conclusion

References

Uniform Interpolation in Modal Logics

[Visser, 1996]A Visser. Uniform interpolation and layered bisimulation. In Godel'96, 1996.

[D'Agostino, Hollenberg, 1996]. G D'Agostino, M. Hollenberg.

Uniform interpolation, automata and the modal μ -calculus. Logic Group Preprint Series, 165, 1996.

Foundations of Uniform Interpolation in DL:

[Lutz,Wolter,2010] C. Lutz, F. Wolter. Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics, In Proceedings of ICJAI 2011.

[Nikitina, Rudolph, 2014] N. Nikitina, S. Rudolph.

(Non-)Succinctness of Uniform Interpolants of General Terminologies in the Description Logic \mathcal{EL} . In Artificial

Intelligence, 2014.

- Conclusion

References

Uniform Interpolation with Tableaux

[Kracht, 2007] M. Kracht. *Modal Consequence Relations*. In Handbook of Modal Logic, chapter 8, 2007.

[Wang, Wang, et al, 2010] Z. Wang, K. Wang, R. Topor, X. Zhang. *Tableau-Based Forgetting in ALC Ontologies*. In Proceedings of ECAI, 2010.

Resolution-Based Second-Order Quantifier Elimination [Gabbay, Ohlbach, 1992] D. Gabbay, Hans Jürgen Ohlbach. *Quantifier Elimination in Second-Order Predicate Logic*. In Proceedings of KR, 1992.

Modal Resolution

[Enjalbert and Fariñas, 1985] P. Enjalbert, L. Fariñas del Cerro. *Modal Resolution in Clausal Form*. Theoretical Computer Science, 65(1):1–33, 1989.
- Conclusion

References

Resolution-Based Uniform Interpolation

[Herzig and Mengin, 2008] A. Herzig, J. Mengin. *Uniform Interpolation by Resolution in Modal Logic.* In Proceedings of JELIA, 2008.

[Ludwig and Konev, 2014] M. Ludwig, B. Konev. *Practical Uniform Interpolation and Forgetting for ALC* TBoxes with Applications to Logical Difference. In Proceedings of KR, 2014. [Koopmann, Schmidt, 2013] P. Koopmann, R. A. Schmidt. *Forgetting Concept and Role Symbols in ALCH-Ontologies.* In Proceedings of LPAR, 2013.

[Koopmann, Schmidt, 2014] P. Koopmann, R. A. Schmidt. *Count and Forget: Uniform Interpolation of SHQ-Ontologies*. In Proceedings of IJCAR, 2014.

- Conclusion

[Koopmann, Schmidt, 2015] P. Koopmann, R. A. Schmidt. Uniform Interpolation and Forgetting for \mathcal{ALC} Ontologies with ABoxes. In Proceedings of AAAI, 2015.

Methods for other DLs Mentioned

[Koopmann, 2015] P. Koopmann. *Practical Uniform Interpolation for Expressive Description Logics*. PhD-Thesis, University of Manchester, 2015.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ♡ < ♡ 60/60</p>