
1/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution-Based Uniform Interpolation and
Forgetting for Expressive Description Logics

Patrick Koopmann

December 12, 2017

2/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Forgetting

Predicate forgetting

Given L sentence φ, predicate P,
compute φ−P s.t.

P does not occur in φ−P

for every L sentence ψ without P:

φ−P |= ψ iff φ |= ψ

Theorem for first order logic:

Iff φ−P exists, then φ−P ≡ ∃P.φ

2/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Forgetting

Predicate forgetting

Given L sentence φ, predicate P,
compute φ−P s.t.

P does not occur in φ−P

for every L sentence ψ without P:

φ−P |= ψ iff φ |= ψ

Theorem for first order logic:

Iff φ−P exists, then φ−P ≡ ∃P.φ

3/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Uniform Interpolation

Craig Interpolation:

Given F |= G , compute interpolant I s.t.

F |= I ,
I |= G
I contains only symbols common to F and G

Uniform Interpolation

Given

formula F
signature Σ of symbols

compute uniform interpolant (UI) F Σ s.t.

F Σ only uses symbols from Σ
for every ψ in Σ, F |= ψ iff F Σ |= ψ

Dual to Forgetting:

UI for Σ ⇔ forget everything not in Σ

3/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Uniform Interpolation

Craig Interpolation:

Given F |= G , compute interpolant I s.t.

F |= I ,
I |= G
I contains only symbols common to F and G

Uniform Interpolation

Given

formula F
signature Σ of symbols

compute uniform interpolant (UI) F Σ s.t.

F Σ only uses symbols from Σ
for every ψ in Σ, F |= ψ iff F Σ |= ψ

Dual to Forgetting:

UI for Σ ⇔ forget everything not in Σ

3/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Uniform Interpolation

Craig Interpolation:

Given F |= G , compute interpolant I s.t.

F |= I ,
I |= G
I contains only symbols common to F and G

Uniform Interpolation

Given

formula F
signature Σ of symbols

compute uniform interpolant (UI) F Σ s.t.

F Σ only uses symbols from Σ
for every ψ in Σ, F |= ψ iff F Σ |= ψ

Dual to Forgetting:

UI for Σ ⇔ forget everything not in Σ

4/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Uniform Interpolation

Input Ontology

Male u Female v ⊥
> v ∀hasParent.Parent
Parent v Male t Female

Father ≡ Parent uMale

Mother ≡ Parent u Female

Orphan ≡ ∀hasParent.¬Alive

hasParent(peter, thomas)

Male(thomas) Alive(thomas)

hasParent(thomas, ingrid)

Uniform Interpolant

Father uMother v ⊥

¬Orphan(peter)

Father(thomas)

(Father tMother)(ingrid)

5/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Ontology Reuse

Big General Ontology

New
Ontology

UI

6/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Explore Hidden Relations

Select concept and role names of interest

Make relations between them explicit

7/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Logical Difference

v1 v2 v3 v4 v5

ui2 ui2

Compare ontology versions

Capture all new entailments in signature Σ:

logDiff(T1, T2,Σ) = {α ∈ T Σ
2 | T1 6|= α}

Σ: common signature, or set of “core” symbols

8/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Module Extraction

UI

Subsumption modules:

Subset of the ontology preserving entailments in signature

UI + axiom pinpointing/justification

9/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Applications of UI

Further applications:

Multi-agent systems
Conflict resolution
Abduction (see later talk)

Similar applications in modal logics

Most techniques presented here also apply to modal logics

Not an application: modal correspondence

Apply SOQE to obtain frame properties:

∀p : ��p → �p ⇐⇒ ∀xyz .(r(x , y) ∧ r(y , z)→ r(x , z))

Requires elimination to preserve all models
UI only preserves entailments in language under consideration

9/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Introduction

Motivation

Applications of UI

Further applications:

Multi-agent systems
Conflict resolution
Abduction (see later talk)

Similar applications in modal logics

Most techniques presented here also apply to modal logics

Not an application: modal correspondence

Apply SOQE to obtain frame properties:

∀p : ��p → �p ⇐⇒ ∀xyz .(r(x , y) ∧ r(y , z)→ r(x , z))

Requires elimination to preserve all models
UI only preserves entailments in language under consideration

10/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Expressive Description Logics

Concepts ALC

⊥ | > | A | ¬C | C t D | C u D | ∃r .C | ∀r .C

TBox Axioms ALC
C v D | C ≡ D

ABox Axioms ALC
C (a) | r(a, b)

ALCH: Role Hierarchies r v s
ALCF : Local Functionality ≤1r .>,≥2r .>
SH: Transitive Roles trans(r)
SHQ: Number Restrictions ≥nr .C ,≤nr .C
SHI: Inverse Roles r−1

11/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Example

UI of Pizza ontology, for 10 most frequent concept and role names

∃hasTopping .> v Pizza > v ∀hasTopping .PizzaTopping
∃hasSpiciness.(Pizza t PizzaTopping) v ⊥

NamedPizza v Pizza VegetableTopping v PizzaTopping

MozzarellaTopping v PizzaTopping u ∃hasSpiciness.Mild

OliveTopping v VegetableTopping u ∃hasSpiciness.Mild

TomatoTopping v VegetableTopping u ∃hasSpiciness.Mild

Pizza uMild v ⊥ Pizza u PizzaTopping v ⊥ PizzaTopping uMild v ⊥
MozzarellaTopping u VegetableTopping v ⊥
OliveTopping u TomatoTopping v ⊥

12/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Relation to Modal Logic

There is a direct relation to multi-modal logics:

∃r .C corresponds to ♦r .C
′

∀r .C corresponds to �r .C
′

∃r−.C corresponds to ♦^
r .C

′

number restrictions correspond to graded modalities
transitivity as in S4 for selected roles

Concepts correspond to modal logic formulae

But: TBox axioms hold globally

13/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Uniform Interpolation

Relation to Second-Order Quantifier Elimination

In first order logic, forgetting corresponds to SOQE:

Iff φ−P exists, then φ−P ≡ ∃P.φ

This does not apply in the logics considered

Consider > v ∃r .A u ∃r .¬A

Forgetting A from the FO-representation yields:

∃A.∀x∃yz .
(
r(x , y) ∧ A(y) ∧ r(x , z) ∧ ¬A(z)

)
≡ ∀x∃yz .

(
r(x , y) ∧ r(x , z) ∧ y 6= z

)
In ALC, the UI is just:

> v ∃r .>

14/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Uniform Interpolation

Challenges Uniform Interpolation

A lot of modal logics have uniform interpolation:

K, IPC, GL, S4Grz [Visser, 1996]
modal µ-calculus [D’Agostino, Hollenberg, 1996]

In most DLs, TBoxes break this property

Consider:

A v B B v ∃r .B Σ = {A, r}

UI for Σ:

A v ∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r .∃r

15/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Preliminaries

Uniform Interpolation

Challenges Uniform Interpolation in DLs

In general, we may have to approximate or to use more
expressive DLs

Deciding existence of UIs in ALC is 2ExpTime-complete

A second challenge is size

If exists, T Σ can have size O
(

222|T |)
Already for lightweight DL EL

ALC: [Lutz, Wolter, 2010], EL: [Nikitina, Rudolph, 2014]

16/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Computing Uniform Interpolants

Computing Uniform Interpolants Practically

Can we compute uniform interpolants practically?

Upper bound on size directly gives us a method for computing
UIs:

1 Iterate over all axioms in signature of size 222|T|

2 Collect all those that are entailed

⇒ However, this is not practical at all!

17/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

First more “practical” idea: use tableaux

Directly generate entailed axioms

Each tree corresponds to disjunct in result

Different edges for ∃- and ∀-restrictions

∃r.B, ∀s.(C t ∃r.D)

B

∃r

C t ∃r.D
C

∀s

∃r.B, ∀s.(C t ∃r.D)

B

∃r

C t ∃r.D
∃r.D

∀s

D

∃r

Modal Logic: [Kracht, 2007], ALC: [Wang, Wang et al, 2010]

18/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

Obtain > v C1 t . . . t Cn from tableau

Each Ci constructed from one tree

Only keep what is in signature

With TBox, tableau might not be finite

Allows to compute arbitrary approximations

Equivalence test to check for termination

last approximation equivalent to current

19/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Computing Uniform Interpolants

Using Tableaux to Compute Uniform Interpolants

Disadvantages of approach:

Result big disjunction

Unusual representation for ontologies

Expansions not goal-oriented

Expensive termination condition

20/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Using Resolution to Compute Uniform Interpolation

Resolution addresses short-comings

Usually works on conjunctive normal forms

Conjunction of disjunctions
Closer to typical shape of ontologies

Infers information on specific symbol

Prop. Resolution

C1 ∨ p C2 ∨ ¬p

C1 ∨ C2

First Order Resolution

C1 ∨ P(s1, . . . , sn) C2 ∨ ¬P(t1, . . . , tn)

C1 ∨ C2 ∨ s1 6= t1 ∨ . . . ∨ sn 6= tn

21/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Main idea used by SOQE method SCAN [Gabbay, Ohlbach, 1992]

1 Clausify input formula

2 Infer all inferences on predicate to eliminate

3 Filter out occurrences of that predicate

4 Deskolemise resulting set of clauses

22/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Let’s try it!

We want to forget B from following ontology:

A v ∀r .B C v ∃r .¬B

Representation as First-Order clauses:

1.¬A(x) ∨ ¬r(x , y) ∨ B(y) 2.¬C (x) ∨ r(x , f (x))

3.¬C (x) ∨ ¬B(f (x))

22/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Let’s try it!

We want to forget B from following ontology:

A v ∀r .B C v ∃r .¬B

Representation as First-Order clauses:

1.¬A(x) ∨ ¬r(x , y) ∨ B(y) 2.¬C (x) ∨ r(x , f (x))

3.¬C (x) ∨ ¬B(f (x))

23/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1. ¬A(x) ∨ ¬r(x , y) ∨ B(y) 2. ¬C (x) ∨ r(x , f (x))

3. ¬C (x) ∨ ¬B(f (x))

Inferences on B:

4. ¬A(x) ∨ ¬r(x , y) ∨ ¬C (x) ∨ y 6= f (x) (Resolution 1,3)

5. ¬A(x) ∨ ¬r(x , f (x)) ∨ ¬C (x) (Constr. Elim.)

⇒ SCAN terminates, but we have insufficient information for UI!

23/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1. ¬A(x) ∨ ¬r(x , y) ∨ B(y) 2. ¬C (x) ∨ r(x , f (x))

3. ¬C (x) ∨ ¬B(f (x))

Inferences on B:

4. ¬A(x) ∨ ¬r(x , y) ∨ ¬C (x) ∨ y 6= f (x) (Resolution 1,3)

5. ¬A(x) ∨ ¬r(x , f (x)) ∨ ¬C (x) (Constr. Elim.)

⇒ SCAN terminates, but we have insufficient information for UI!

24/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Representation as First-Order clauses:

1. ¬A(x) ∨ ¬r(x , y) ∨ B(y) 2. ¬C (x) ∨ r(x , f (x))

3. ¬C (x) ∨ ¬B(f (x))

Inferences on B:

4. ¬A(x) ∨ ¬r(x , y) ∨ ¬C (x) ∨ y 6= f (x) (Resolution 1,3)

5. ¬A(x) ∨ ¬r(x , f (x)) ∨ ¬C (x) (Constr. Elim. 4)

Additional steps complete the picture:

6. ¬A(x) ∨ ¬C (x) ∨ f (x) 6= f (x) (Resolution 2,5)

7. ¬A(x) ∨ ¬C (x) (Constr. Elim. 6)

25/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using SCAN to Compute Uniform Interpolants

Complete Clause Set:

1. ¬A(x) ∨ ¬r(x , y) ∨ B(y)

2. ¬C (x) ∨ r(x , f (x))

3. ¬C (x) ∨ ¬B(f (x))

4. ¬A(x) ∨ ¬r(x , y) ∨ ¬C (x) ∨ y 6= f (x)

5. ¬A(x) ∨ ¬r(x , f (x)) ∨ ¬C (x)

6. ¬A(x) ∨ ¬C (x) ∨ f (x) 6= f (x)

7. ¬A(x) ∨ ¬C (x)

Uniform Interpolant:

C v ∃r .> A u C v ⊥

26/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with SCAN

Using Resolution to Compute Uniform Interpolants

Downsides of SCAN:

Infers too much
Infers too little

Needed: More than just SOQE

⇒ Infer consequences that are

in target signature
translate to logic under consideration

More direct approach:

Stay in logic under consideration

27/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Uniform Interpolation Using Modal Resolution

Idea first followed by [Herzig and Mengin, 2008] for modal
logic K

Based on resolution calculus for modal logics by [Enjalbert
and Fariñas, 1985]

Allow to resolve on arbitrary levels of formula:

C1 ∨ ♦�(C2 ∨ p)
C3 ∨ ♦♦(C4 ∨ ¬p)

=⇒ C1 ∨ C3 ∨ ♦♦(C2 ∨ C4)

Idea: use system of “meta”-rules to generate rules with
arbitrary nesting depth

28/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Modal Resolution after Enjalbert and Fariñas

Normal form assumes DNF/CNF on each level of formula

CNF under diamond: ♦(C1, . . . ,Cn)
DNF under box: �(T1 ∨ . . . ∨ Tn)

Base rules:
C1 ∨�⊥, C2 ∨ ♦E =⇒α C1 ∨ C2

C1 ∨ p, C2 ∨ ¬p =⇒α C1 ∨ C2

Extended rules provided C1,C2 =⇒α C3 / C1 =⇒α C2

C ′1 ∨�C1, C ′2 ∨ ♦(C2,E) =⇒α C ′1 ∨ C ′2 ∨ ♦(C2,E ,C3)
C ′1 ∨�C1, C ′2 ∨�C2 =⇒α C ′1 ∨ C ′2 ∨�C3

C ∨ ♦(C1,C2,E) =⇒α C ∨ ♦(C1,C2,E ,C3)
C ∨ ♦(C1,E) =⇒α C ∨ ♦(C1,E ,C2)
C ∨�C1 =⇒α C ∨�C2

29/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Computing UIs using Modal Resolution

UI computed similar to SCAN:

Compute all resolvents on symbols to forget

Forms complete method for modal logic K

Termination assured by maximum nesting depth in K

Extended to ALC in [Ludwig and Konev, 2014]:

First practical method for UI in ALC
Additional rules to handle TBox axioms
Termination cannot be guaranteed, but arbitrary
approximations computed

30/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Computing UIs by Modal Resolution

Goal-oriented approach allows for practicality

The cost is completeness

A v B B v C t ∃r .B A v ∀r .∀r .⊥
Σ = {A,C , r}

Computing inferences only on B will not terminate

However, there is a uniform interpolant for {A,C , r}:

A v C t ∃r .C A v ∀r .∀r .⊥

Probably in general no easy solution

31/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Computing UIs using Resolution

What to do about termination problem?

⇒ Move to language that has uniform interpolation!

31/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

Computing UIs with Modal Resolution

Computing UIs using Resolution

What to do about termination problem?

⇒ Move to language that has uniform interpolation!

32/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

DLs with Greatest Fixpoints

DLs With Greatest Fixpoint Operators

New concept constructor νX .C [X]

C [X]: concept that contains X only positively

Allows to represent loops:

A u νX .(C u ∃r .X) ⇐⇒ A u C u ∃r .

⇐⇒ A u (C u ∃r .(C u ∃r .(C u ∃r .(. . .))))

33/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

DLs with Greatest Fixpoints

Example

Consider the following ontology:

A v B t C B v ∃r .B C v ∀r .¬B

No UI for Σ = {A,C , r} in ALC

However, in ALCν, we have the following UI:

C v ∀r .(¬A t C) A v C t νX .(¬C u ∃r .X)

34/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Resolution Based Uniform Interpolation

DLs with Greatest Fixpoints

DLs with Greatest Fixpoint Operators

Greatest fixpoint operators give us uniform interpolation in
ALC–ALCHI
They can be easily approximated:

νX .C [X] ≈ C [C [C [C [C [>]]]]]

They can be “simulated” using auxiliary concept names:

A v νX .C [X] becomes A v D, D v C [D]

35/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Flattened Approach

Final approach:

Uses resolution

Uses flattened normal form to ensure termination

Always terminates for ALCHν (ALCH+greatest fixpoints)

Fixpoints can then be approximated or simulated in ALCH

36/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Normal form, ALCH

ALCH Clause

r v s
> v L1 t . . . t Ln Li : ALC literal

ALC Literal

A | ¬A | ∃r .D | ∀r .D
A: any concept name, D: definer symbol

Definer symbols: special concept names, not part of signature

Invariant: max 1 negative definer symbol per clause

⇒ ¬D1 t ∃r .D2 t ¬B, (((((((¬D1 t ¬D2 t A

37/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Definer symbols

Invariant: max 1 negative definer symbol per clause

Allows easy translation to clausal form and back:

C1 t Qr .C2 ⇐⇒ C1 t Qr .D1, ¬D1 t C2

C1 t νX .C2[X] ⇐⇒ C1 t Qr .D1, ¬D1 t C2[D]

New definer symbols introduced by calculus

At most exponentially many

38/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Basic Method

Input Language Finitely Bounded
Representation

O N

N+

NΣOΣ

translate

Derive Implicit Knowledge

Filter Concepts & Roles

translate

Input

Result

O

OΣ

39/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Rules of the Calculus

Concept forgetting in ALC uses two rules

Resolution

C1 t A C2 t ¬A

C1 t C2

Role Propagation

C1 t ∀r .D1 C2 t Qr .D2

C1 t C2 t Qr .D12

where Q ∈ {∀, ∃}
D12 is a possibly new definer representing D1 u D2

side condition: C1 t C2 does not contain more than one
negative definer literal

40/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

Assume the following ontology:

C1 v ∃r .A

C2 v ∀r .(B t ¬A)

Normalisation brings four clauses:

¬C1 t ∃r .D1 ¬D1 t A

¬C2 t ∀r .D2 ¬D2 t B t ¬A

41/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

¬D1 t A
¬C1 t ∃r .D1

¬D2 t B t ¬A
¬C2 t ∀r .D2

Cannot resolve due invariantCannot resolve due invariant

combine

¬C1 t ¬C2 t ∃r .D12

¬D12 t A
¬D12 t B t ¬A

Resolves to ¬D12 t BResolves to

41/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

¬D1 t A
¬C1 t ∃r .D1

¬D2 t B t ¬A
¬C2 t ∀r .D2

Cannot resolve due invariant

Cannot resolve due invariant

combine

¬C1 t ¬C2 t ∃r .D12

¬D12 t A
¬D12 t B t ¬A

Resolves to ¬D12 t BResolves to

41/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

¬D1 t A
¬C1 t ∃r .D1

¬D2 t B t ¬A
¬C2 t ∀r .D2

Cannot resolve due invariant

Cannot resolve due invariant

combine

¬C1 t ¬C2 t ∃r .D12

¬D12 t A
¬D12 t B t ¬A

Resolves to ¬D12 t BResolves to

41/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

¬D1 t A
¬C1 t ∃r .D1

¬D2 t B t ¬A
¬C2 t ∀r .D2

Cannot resolve due invariant

Cannot resolve due invariant

combine

¬C1 t ¬C2 t ∃r .D12

¬D12 t A
¬D12 t B t ¬A

Resolves to ¬D12 t B

Resolves to

42/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Example

Final clause set:

¬C1 t ∃r .D1 ¬D1 t A

¬C2 t ∀r .D2 ¬D2 t B t ¬A

¬C1 t ¬C2 t ∃r .D12

¬D12 t D1 ¬D12 t D2

¬D12 t B

We obtain as uniform interpolant for {r ,B,C1,C2}:

C1 v ∃r .> C2 v ∀r .> C1 u C2 v ∃r .B

43/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Forgetting Concept and Role Names in ALCH

∃-elimination

C t ∃r .D ¬D

C

Role hierarchy

r v s s v t

r v t

Universal roles

C1 t ∀s.D1 r v s

C1 t ∀r .D1

Existential roles

C1 t ∃s.D1 s v r

C1 t ∃r .D1

⇒ Rules form refutational and interpolation complete calculus

44/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Forgetting Role Names

Alternative rule allows for more convenient implementation

Provided T |= D0 u . . . u Dn u D v ⊥, apply:

Role Restriction Resolution

C0 t ∀r .D0 . . . Cn t ∀r .Dn C t ∃r .D

C0 t . . . t Cn t C

Side condition: C0 t . . . t Cn t C does not contain more than
one negative definer literal

⇒ Use external reasoner

45/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Forgetting Algorithm

To eliminate (concept/role) name X :

1 Determine literals that allow for inference on name

2 If result would break invariant:

Check whether role propagation makes inference possible
Evt. recursively call Step 2

General Algorithm:

1 Process names by number of occurrences

2 Use simplification heuristics at each step to keep result small

Determine tautological fixpoints: νX .C [X] where C [>] = >

45/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Basic Calculus

Forgetting Algorithm

To eliminate (concept/role) name X :

1 Determine literals that allow for inference on name

2 If result would break invariant:

Check whether role propagation makes inference possible
Evt. recursively call Step 2

General Algorithm:

1 Process names by number of occurrences

2 Use simplification heuristics at each step to keep result small

Determine tautological fixpoints: νX .C [X] where C [>] = >

46/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Flattened Approach

General structure of calculus:

1 Resolution-like rule (Resolution, ∃-elimination, etc.)
2 Combination rule (role propagation rule)

Purpose of combination rule is to introduce definers

More combination rules possible in more expressive DLs

47/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Functional Role Restrictions

ALCF has constructors ≤1r .> and ≥2r .>
⇒ local functionality and its complement

Universalisation

C1 t ∃r .D1 C2 t ≤1r .>

C1 t C2 t ∀r .D1

∃∃-Role Propagation

C1 t ∃r .D1 C2 t ∃r .D2

C1 t C2 t ∃r .D12 t ≥2r .>

48/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Example:

A v ∃r .B A v ∃r .¬B

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

49/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

Inferences:

5. ¬A t ∃r .D12 t ≥2r .> (∃∃-Role Prop. 1,3)

6. ¬D12 t A (D12 v D1)

7. ¬D12 t ¬A (D12 v D2)

8. ¬D12 (Resolution 6,7)

9. ¬A t ≥2r .> (∃-elimination 5,8)

49/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

Inferences:

5. ¬A t ∃r .D12 t ≥2r .> (∃∃-Role Prop. 1,3)

6. ¬D12 t A (D12 v D1)

7. ¬D12 t ¬A (D12 v D2)

8. ¬D12 (Resolution 6,7)

9. ¬A t ≥2r .> (∃-elimination 5,8)

49/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

Inferences:

5. ¬A t ∃r .D12 t ≥2r .> (∃∃-Role Prop. 1,3)

6. ¬D12 t A (D12 v D1)

7. ¬D12 t ¬A (D12 v D2)

8. ¬D12 (Resolution 6,7)

9. ¬A t ≥2r .> (∃-elimination 5,8)

49/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Example Functional Role Restrictions

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

Inferences:

5. ¬A t ∃r .D12 t ≥2r .> (∃∃-Role Prop. 1,3)

6. ¬D12 t A (D12 v D1)

7. ¬D12 t ¬A (D12 v D2)

8. ¬D12 (Resolution 6,7)

9. ¬A t ≥2r .> (∃-elimination 5,8)

50/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Functional Role Restrictions

Example:
A v ∃r .B A v ∃r .¬B

Clauses:

1. ¬A t ∃r .D1 2. ¬D1 t A

3. ¬A t ∃r .D2 4. ¬D2 t ¬A

5. ¬A t ∃r .D12 t ≥2r .> 6. ¬D12 t A

7. ¬D12 t ¬A 8. ¬D12

9. ¬A t ≥2r .>

Uniform interpolant for Σ = {A, r}:

A v ≥2r .>

51/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

General Number Restrictions

Rules can be generalised to support qualified number restrictions

≤≤-Combination:

C1 t ≤n1r1.¬D1 C2 t ≤n2r2.¬D2 r v r1 r v r2

C1 t C2 t ≤(n1 + n2)r .¬D12

≤≥-Combination:

C1 t ≤n1r1.¬D1 C2 t ≥n2r2.D2 r2 vR r1 n1 ≥ n2

C1 t C2 t ≤(n1 − n2)r1.¬(D1 t D2) t ≥1r1.D12

...

C1 t C2 t ≤(n1 − 1)r1.¬(D1 t D2) t ≥n2r1.D12

≥≤-Combination:

C1 t ≥n1r1.(D1 t . . . t Dm) C2 t ≤n2r2.¬Da r1 vR r2

C1 t C2 t ≥(n1 − n2)r1.(D1a t . . . t Dma)

≥≥-Combination:

C1 t ≥n1r1.D1 C2 t ≥n2r2.D2 r1 vR r r2 vR r

C1 t C2 t ≥(n1 + n2)r .(D1 t D2) t ≥1r .D12

...

C1 t C2 t ≥(n1 + 1)r .(D1 t D2) t ≥n2r .D12

52/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Extensions for More Expressive DLs

Limits of Approach

Approach has been extended to DLs supporting:

local functionality
number restrictions (graded modalities)
transitive roles (as in modal logic S4)
inverse roles (converse modalities)
ABoxes

⇒ Complete methods for SHIν, SIFν and SHQν
Transitive roles cannot be eliminated
SHQ: only forgetting concept names

Combining rules further breaks completeness

Possibly limit of resolution approach
Might require support for role conjunctions

53/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Evaluation

Evaluation of Forgetting

ALCH, forget 50 symbols

Success Rate: 91.10%
Without Fixpoints: 95.29%
Duration Mean: 7.68 sec.
Duration Median: 2.74 sec.
Duration 90th percentile: 12.45 sec.

ALC w. ABoxes, forget 50 symbols

Success Rate: 94.79%
Without Fixpoints: 92.91%
Duration Mean: 23.94 sec.
Duration Median: 3.01 sec.
Duration 90th percentile: 29.00 sec.

SHQ, forget 50 concept symbols

Success Rate: 95.83%
Without Fixpoints: 93.40%
Duration Mean: 7.62 sec.
Duration Median: 1.04 sec.
Duration 90th percentile: 4.89 sec.

ALCH, forget 100 symbols

Success Rate: 88.10%
Without Fixpoints: 93.27%
Duration Mean: 18.03 sec.
Duration Median: 3.81 sec.
Duration 90th percentile: 21.17 sec.

ALC w. ABoxes, forget 100 symbols

Success Rate: 91.37%
Fixpoints: 92.48%
Duration Mean: 57.87 sec.
Duration Median: 6.43 sec.
Duration 90th percentile: 99.26 sec.

SHQ, forget 100 concept symbols

Timeouts: 90.77%
Fixpoints: 91.99%
Duration Mean: 13.51 sec.
Duration Median: 1.60 sec.
Duration 90th percentile: 11.65 sec.

Corpus Respective fragments of 306 ontologies from
BioPortal having at most 100,000 axioms.

Timeout 30 minutes

54/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Flattened Approach

Evaluation

Evaluation of Uniform Interpolation

ALC Knowledge Bases, #S = 50

Success Rate: 84.78%
Without Fixpoints: 96.06%
Duration Mean: 113.90 sec.
Duration Median: 29.58 sec.
Duration 90th percent.: 330.56 sec.
Axioms Mean: 198.52
Axioms Median: 31.00
Axioms 90th percent.: 426.00
Ax. Size Mean: 6.15
Ax. Size Median: 3.00
Ax. Size 90th percent.: 5.59

ALC Knowledge Bases, #S = 100

Success Rate: 80.54%
Without Fixpoints: 95.04%
Duration Mean: 313.28 sec.
Duration Median: 214.56 sec.
Duration 90th percent.: 780.30 sec.
Axioms Mean: 302.78
Axioms Median: 84.00
Axioms 90th percent.: 709.00
Ax. Size Mean: 4.66
Ax. Size Median: 3.04
Ax. Size 90th percent.: 5.82

Corpus Respective fragments of 306 ontologies from
BioPortal having at most 100,000 axioms.

Timeout 30 minutes

55/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

Conclusion

UI has many applications in DLs, but also in modal logics

Resolution often allows to compute UIs practically

Method implemented in tool/library Lethe, available online

Calculi might have applications outside UI

Not covered in this tutorial:

Forgetting with ABoxes
Forgetting with background knowledge

56/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

Thank you!

57/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

References

Uniform Interpolation in Modal Logics
[Visser, 1996]A Visser. Uniform interpolation and layered
bisimulation. In Godel’96, 1996.
[D’Agostino, Hollenberg, 1996]. G D’Agostino, M. Hollenberg.
Uniform interpolation, automata and the modal µ-calculus. Logic
Group Preprint Series, 165, 1996.
Foundations of Uniform Interpolation in DL:
[Lutz,Wolter,2010] C. Lutz, F. Wolter. Foundations for Uniform
Interpolation and Forgetting in Expressive Description Logics, In
Proceedings of ICJAI 2011.
[Nikitina,Rudolph,2014] N. Nikitina, S. Rudolph.
(Non-)Succinctness of Uniform Interpolants of General
Terminologies in the Description Logic EL. In Artificial
Intelligence, 2014.

58/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

References

Uniform Interpolation with Tableaux
[Kracht, 2007] M. Kracht. Modal Consequence Relations. In
Handbook of Modal Logic, chapter 8, 2007.
[Wang, Wang, et al, 2010] Z. Wang, K. Wang, R. Topor, X.
Zhang. Tableau-Based Forgetting in ALC Ontologies. In
Proceedings of ECAI, 2010.
Resolution-Based Second-Order Quantifier Elimination
[Gabbay, Ohlbach, 1992] D. Gabbay, Hans Jürgen Ohlbach.
Quantifier Elimination in Second-Order Predicate Logic. In
Proceedings of KR, 1992.
Modal Resolution
[Enjalbert and Fariñas, 1985] P. Enjalbert, L. Fariñas del Cerro.
Modal Resolution in Clausal Form. Theoretical Computer Science,
65(1):1–33, 1989.

59/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

References

Resolution-Based Uniform Interpolation
[Herzig and Mengin, 2008] A. Herzig, J. Mengin. Uniform
Interpolation by Resolution in Modal Logic. In Proceedings of
JELIA, 2008.
[Ludwig and Konev, 2014] M. Ludwig, B. Konev. Practical
Uniform Interpolation and Forgetting for ALC TBoxes with
Applications to Logical Difference. In Proceedings of KR, 2014.
[Koopmann, Schmidt, 2013] P. Koopmann, R. A. Schmidt.
Forgetting Concept and Role Symbols in ALCH-Ontologies. In
Proceedings of LPAR, 2013.
[Koopmann, Schmidt, 2014] P. Koopmann, R. A. Schmidt. Count
and Forget: Uniform Interpolation of SHQ-Ontologies. In
Proceedings of IJCAR, 2014.

60/60

Resolution-Based Uniform Interpolation and Forgetting for Expressive Description Logics

Conclusion

[Koopmann, Schmidt, 2015] P. Koopmann, R. A. Schmidt.
Uniform Interpolation and Forgetting for ALC Ontologies with
ABoxes. In Proceedings of AAAI, 2015.

Methods for other DLs Mentioned
[Koopmann, 2015] P. Koopmann. Practical Uniform Interpolation
for Expressive Description Logics. PhD-Thesis, University of
Manchester, 2015.

	Introduction
	Motivation

	Preliminaries
	Uniform Interpolation

	Computing Uniform Interpolants
	Resolution Based Uniform Interpolation
	Computing UIs with SCAN
	Computing UIs with Modal Resolution
	DLs with Greatest Fixpoints

	Flattened Approach
	Basic Calculus
	Extensions for More Expressive DLs
	Evaluation

	Conclusion

